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Abatraet--This investigation deals with the experimental determination of the mean velocity ratio of air 
and water in adiabatic two-phase pipe flows under steady-state critical conditions and with the analytical 
derivation of the mean velocity ratio, mean void fraction and critical mass flux based upon a radial 
modeling of the flow. An air-water loop was designed and constructed to determine the critical mass flux 
and the mean velocity ratio with an impulse measurement device as functions of tube diameter and length, 
pressure and flow quality. Measurements of the radial distribution of total pressure in critical flow at the 
exit cross-section of the test tube, combined with analytical considerations, yielded radial profiles of 
density, void fraction and velocity of the phases. These profiles reveal the occurrence of a locally 
homogeneous flow, whereas the mean velocity ratio of the flow exceeds the value of unity. Assuming that 
the local velocities, excepting those near the wall, are equal to the local homogeneous sonic velocity, a 
subsequent application of an integrational procedure permitted the computation of the mean velocity ratio 
and the critical mass flux. The results arc in good agreement with the experimental data. A parameter 
variation study proved the applicability of the analytical procedure to the description of critical 
two-component two-phase flows. 

Key Words: critical two-phase pipe flow, velocity ratio, critical mass flux, radial phase distribution, radial 
velocity distribution, local homogeneous sonic velocity 

1. I N T R O D U C T I O N  

In recent investigations of critical single-component two-phase flows (Petry et al. 1984) a number 
of problems associated with phase transition and phase distribution, together with the ensuing 
velocity ratio, remained unresolved. In order to clarify these open questions a research project was 
initiated to study critical two-component two-phase flows of air-water mixtures in pipes of small 
diameters, reflected in a report by Winter & Dcichsel (1988). Based upon prior experience gained in 
connection with the design, construction and operation of a freon-loop, an air-water flow facility 
was developed. Contrary to the problems associated with phase transition ~ in single-component 
two-phase flows, two-component two-phase flows only raise questions concerning the occurrence of 
hydrodynamic non-equilibrium, expressed in terms of the velocity ratio, and none regarding phase 
transition and thermodynamic non-equilibrium of the flow system. 

2. P H Y S I C A L  M O D E L  

The physical model of the adiabatic two-component critical flow under study, which provides 
the basis for the development of the one-dimensional steady-state conservation equations, is shown 
in figure 1. A sufficiently high pressure difference between the supply vessel and the plenum chamber 
causes the two-phase flow to become critical in the exit cross-section of the test tube. 

The test pipe is supplied with constant water and air mass flow rates of varying ratios, mL and m~, 
under variable supply pressures, P0, at a fixed ambient temperature, To. Particular critical flow 
conditions in the exit plane, A~, of the system are achieved by adequately reducing the chamber 
pressure, Po0, while keeping the supply pressure, P0, at a desired level, Leaving the pipe, the critical 
two-phase flow forms a jet which is deflected perpendicularly to the flow direction by the 
rotationally symmetrical impulse device, allowing the measurement of the total momentum of the 
flow in terms of a reaction force, Fa~. This concept wasfirst employed in form of an "impulse plate" 
by Giffen & Crang (1946). Conditions in the entrance and exit sections of the test pipe are denoted 
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Figure 1, Physical model. 

by the subscripts, 0 and E, respectively. In figure 1 two system boundaries are shown. The one 
within the test tube encompasses an open adiabatic system for which the mass continuity equation 
becomes 

tnL + rho = const. [1] 

The other boundary circumscribes the impulse device and the region of the deflected two-phase 
jet. For this boundary, with the exception of the very discharge (pipe) area, AE, the acting static 
pressure is considered to be the constant pressure of the plenum chamber, p~. The momentum 
equation in the axial direction for this open system reduces to the resultant force balance: 

FR,z = (rhr' ffL + rhG" we) + AE(PE -- Po~), [2] 

where the ff denote the mean phase velocities. Introducing the definition for the mean velocity ratio, 
•, of the critical two-phase flow in the exit cross-section, 

g = wo, [31 
ffL 

into the equation for the force balance, and recognizing that the exit cross-sectional area of the 
flow can be determined according to 

mL mG 
AE ----- (WLPL) + (ffGPG) ' [4] 

a quadratic equation is obtained, which is in agreement with similar expressions presented by Vance 
(1962) and Klingebiel & Moulton (1971): 

"~L 1 PL = O. ~+s~A~pL(PE--p~) AEFR.,PL t m.'cpL+ + [5] 
L rh--~ rh--~ mc #nL re, pc -~o~ Pc 

Solution of [5] for the mean velocity ratio, S, requires the experimental determination of the 
unknown quantities in appropriate experiments. 

3. EXPERIMENTAL FACILITY 

An air-water two-phase flow facility, the schematic diagram of which is given in figure 2, was 
designed and constructed. The test facility consists of an open air "loop" and a closed water loop. 

Two compressors supply an adequate mass flow rate of air at a sufficiently high pressure. The 
gas passes through a filter and continues through a pressure-reducing valve for pre-adjustment of 
the desired supply pressure. Then the air flows through a heater where its temperature is increased 
to the ambient level. An orifice type flow meter, together with a pneumatic valve, are used to adjust 
its flow rate in accordance with the desired constant supply pressure level, P0, ranging from 7 to 
25 bar. 

A reciprocating pump supplies a filtered water flow of required rate and pressure. The pressure 
surges are dampened out in pressure-equalizing vessels. Flow rate and supply pressure are regulated 
by means of a pneumatic valve and a turbine flow meter in such a way that, after combining the 
two flows in the mixing chamber, the predetermined supply pressure, P0, and the flow quality, k, 
remain constant. 
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A mesh wire structure, installed in the mixing chamber, insures that a homogeneous two-phase 
flow mixture of constant flow quality, ~, pressure, P0, and temperature, To, enters the interchange- 
able test tubes. Each test tube is provided with pressure taps (dia 0.1-0.3 ram) for determination 
of the static pressure distribution in the flow direction and with thermocouples for measurement 
of the wall temperature. The spacings between the pressure and temperature probes are reduced 
towards the exit of the test tubes, in order to acquire sufficiently accurate data. Leaving the exit 
plane of the test tube, the flow develops into a two-phase jet impinging symmetrically upon the 
conically-shaped impulse vane deflecting the jet perpendicularly to its axis. The expanded 
two-phase jet leaves the plenum chamber, passing through two flexible hoses connected to a 
blow-off tank that is fitted with a relief valve for release of the air into the atmosphere. The valve 
is manually adjustable and serves to control the pressure, p®, in the plenum chamber. The water 
is returned to the supply tank by way of a float valve. 

The mixing chamber, test tube and plenum chamber are mounted on a tilting rig having an 
angular freedom of 90 °. All other components of the facility are locked in place. A data acquisition 
system, assisted by a computer for data reduction, processes the relevant experimental data and 
solves [5] for the mean velocity ratio, S ~. It is essential to recognize, that the static pressure in the 
exit cross-section of the test tube cannot be measured directly and that it has to be obtained 
indirectly from pressure measurements along the tube wall and within the expanding jet. An 
exponential spline routine and an interpolation and extrapolation procedure yield the acting exit 
pressure, PE, from the measured values. Under adiabatic flow conditions it was found that the 
temperature of the flow in the exit cross-section is identical with that measured at the tube wall 
5 mm upstream of the exit plane. 

The schematic diagram in figure 3 illustrates the impulse and pressure measurement device, the 
purpose of which is threefold: 

• measurement of the reaction force, FR,~, for determination of the total momentum 
of the critical two-phase flow; 

• measurement of the static pressure distribution, p(z), in the axial direction of the 
flow to assist in determining the exit pressure, PE; and 

• measurement of the radial total pressure distribution, Ptot(r), in the exit plane, 
revealing the radial distribution of the local momentum. 

To accomplish these tasks, the base of the device, not shown in figure 3, is mounted on a remotely 
controlled, motor-driven, three-dimensional traversing mechanism, permitting a precise positioning 
of the probes. The interchangeable nose cones, which are shaped to follow the streamlines of an 
incompressible stagnation point flow, have base diameters of 70 and 110 mm. 

The device for recording the reaction force is attached to a load cell, the sensitivity of which is 
~0.4%, generating a signal which is a measure for the momentum acting on it. 

The measurement of the static pressure distribution in the flow direction is carried out using 
another, cone-like device (figure 3). This static pressure sensing probe is fitted with a hollow needle 
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Figure 2. Schematic layout of  the two-phase flow facility. 
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(dia 0.45 mm) at its head, which has a pressure tap (dia 0.1 mm) on the side to measure the static 
pressure, PE, in the exit cross-section and the axial static pressure distribution, p(z), in the 
expanding free jet. 

A second head, also fitted with a hollow needle, has a pressure tap (dia 0.15 ram) at its tip for 
recording the radial total pressure distribution, Ptot(r), within the exit cross-section. 

During the measurements, the connecting flexible metal tubes (i.d. 1.5 mm) between the pressure 
tap and the transducer are filled with water. The applicability and reliability of the three 
measurement techniques, measurement of the reaction force and of the static pressure, together 
with the total pressure distributions were tested with single-phase water and air flows. Deviations 
between measured and predicted values under single-phase flow conditions for the reaction force 
did not exceed 0.014 N in water flows (relative accuracy 0--2%) and 0.175 N in air flows (relative 
accuracy 0-8%), whilst the deviation between measured and calculated local dynamic pressures in 
the center of the exit plane in both cases did not surpass 3%. 

4. E X P E R I M E N T S  

Critical flow conditions had to be verified prior to the acquisition of experimental data. 
Attainment of critical conditions was based on the two well-known criteria, which are illustrated 
in figures 4a, b: 

Once a critical mass flow rate rh~r = (/~L + FhG)cr is reached at a preset constant 
supply pressure, P0, and a constant flow quality, ~, a subsequent decrease in the 
pressure, p~, in the plenum chamber does not increase the flow rate any further. 
This is shown qualitatively in figure 4a for two different constant supply pressures 
Po,l and Po.ll and constant flow qualities, ~, in response to an increase in the pressure 
drop (Po - -  P~). 
In the exit cross-section of the test tubes the fluid velocity equals the sonic flow 
velocity, i.e. the static pressure in the exit region of the tube does not react to a 
further lowering of the pressure, p~,  in the plenum chamber. A typical measure- 
ment for this criterion is displayed qualitatively in figure 4b. The development over 
time of both mass flow rates and several static pressure values is depicted in 
response to a stepwise decrease in the pressure in the plenum chamber. Critical 
conditions are achieved when the static pressure in the last tap, p~_ ~, does not 
react any longer to the pressure decrease in the plenum chamber. Notice the last 
pressure step in figure 4b, in which the dashed line indicates the range for which 
occurrence of the critical flow condition in the exit plane of the test tube is 
assumed. 

It is obvious that the pressure criterion is more readily recognizable than that of the asymptotic 
behavior of the flow rate. 
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Figure 3. Impulse and pressure measurement device. 
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Figure 4a. Criterion for the critical mass flow rate 

= /  P0 
.g ~ p(-400) 
~ , _ ~  not cr~t,com I cr,t,co( 

I ~ (p(-2.5) 

t 

Figure 4b. Mass flow rates and static pressure development 
in response to a reduction in chamber pressure. The values 
in parentheses identify the position of the pressure taps. 

5. E X P E R I M E N T A L  R E S U L T S  

Several typical static pressure profiles, p(z), measured along the axis of the flow in the end section 
of the test tube and in the expanding free jet are displayed in figure 5. The pressure distributions 
reveal an increase in the pressure gradient reaching maximal values in the vicinity of the exit plane 
with increasing mean flow qualities. The static pressure of the free jet with flow qualities > 0.1 and 
mean void fractions >0.85 in the exit plane falls significantly below the chamber pressure, Po~, 
thereby forming well-defined standing pressure waves, also observed by Faletti (1959) and 
Klingebiel (1964). The pressure profiles disclose a downstream distance of approx. D/2 from the 
exit cross-section at which the static pressure in the axis of the expanding jet for the first time equals 
the plenum chamber pressure, p=. Knowledge of both, distance from the exit plane and of the 
chamber pressure, are prerequisites for the determination of the exit pressure, PE, by means of 
mathematical routines. This holds true because the axial pressure profiles, as shown in figure 5, 
can only be measured in a few significant test runs. In all other cases the exit pressure, PE, had 
to be derived mathematically by either interpolation or exponential spline routines from the 
measured static pressure in the exit section of the test tube (figure 3) and the acting chamber 
pressure at the distance D/2. 

Measurements of the radial distribution of the static pressure in the exit cross-section show only 
a very weak decrease towards the wall. For this reason a constant static pressure, PE, throughout 
the exit cross-section is assumed for the subsequent data reduction. 

6. DATA REDUCTION 

The data reduction unit processes the acquired data of a particular experiment and the pertinent 
fluid properties together with the solution procedure for [5]. Typical sets of the resulting data 
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Figure 5. Axial static pressure profiles (Po ~ 15 bar, D = 0.003 m, L = 0.468 m). 
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contain the mean critical velocity ratio, S, and its dependence on the mean void fraction, g, in the 
exit cross-section as function of the flow quality, which are displayed in figures 6a and 6b. In this 
context it should be mentioned that the pressure- and temperature-dependent mean void fraction, 
rather than the flow quality which is constant over the whole length of  the pipe, is the more 
significant two-phase flow parameter  for the description of the critical flow behavior in the exit 
cross-section. Another  exemplary set of  reduced data is shown in figures 7a and 7b, wherein the 
critical mass flux, G, is plotted vs the mean void fraction and the flow quality. In all diagrams it 
is noteworthy that, for a coherent set of  data obtained with one constant supply pressure, the exit 
pressure varies by a factor of  about  2 due to frictional effects. 

Table 1 is a listing of  parameter  ranges within which the current experiments were performed 
by Winter & Deichsel 0988).  Summarizing the results of  a large number  of  these experiments 
demonstrates that the mean critical velocity ratio: 

• varies with the mean void fraction, while approaching unity for the two limiting 
values (g ~ 0  and ~ --, 1); 

• reaches a maximum under critical flow conditions in the range, 0.9 < ( <  0.95; 
• becomes independent of  pipe diameters D >t 3 mm, however, increases with a 

decreasing diameter from D = 3 to D = 1.1 mm; 
• is invariant for length over diameter ratios LID >~ 156; 
• depends weakly upon length over diameter ratios 156 > LID >~ 5.5; and 
• decreases with increasing exit pressure, PE- 
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Figures 6a, b. Mean critical velocity ratio related to the mean void fraction in the exit cross-section and 
the flow quality 0-1 P0 ~ 10 bar, /k P0 ~ 15 bar; x P0 ~ 20 bar, + P0 ~ 25 bar; L/D = 156, D = 0.003 m, 

L = 0.468 m, T ~ 293K). 
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Figures 7a, b. Critical mass flux related to the mean void fraction in the exit cross-section and the flow 
quality ([]  p0~10bar ,  A P0~15bar ,  x p0 ,,, 20 bar, + P0~25bar ;  L/D=I56, D = 0 . 0 0 3 m ,  

L = 0.468 m, T ~ 293K). 

The flow patterns observed range from dispersed bubble to dispersed spray flows undergoing 
continuous transitions from one regime to another. The sizes of bubbles and droplets do not exceed 
a few hundredths of a millimeter, caused by high velocities and the associated shear stresses. 

7. T O T A L  P R E S S U R E  D I S T R I B U T I O N  I N  T H E  T U B E  E X I T  

Numerous measurements of total pressure profiles in the exit area of the test tubes were 
performed, covering the entire range of mean void fractions from ~ = 0 (subcritical pure water flow) 
to ~ = 1 (critical pure air flow), in order to shed some light upon the behavior of the critical 
mean velocity ratio. Representative results in terms of reduced dynamic pressure profiles, 
/~ay.(r) =Ptot(r)--PE are plotted in figure 8, in which the scale of the ordinate is subdivided with 
regard to each profile. The shape of the profiles varies from a turbulent one, for pure water with 
a maximum dynamic pressure in the center of the flow, via those with a minimum in the center 
and a maximum close to the wall and again to profiles approaching that of pure air flow with a 

Table 1. Experimental parameters (rounded) 

Parameter Symbol Value Unit 

Diameter D 0.001 I, 0.0019, 0.003, 0.005 m 
Length/diameter L/D 5.5, 156, 273, 500 
Supply pressure P0 7, 10, 15, 20, 25 bar 
Flow quality ~ 0.002-0.5 
Orientation horizontal/vertica I 
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maximum in the center. The motivation for this particular study of local dynamic pressures in the 
exit cross-section was the desire to clarify the interdependence of the local phase distribution, g(r), 
the local velocity ratio, S, and the mean velocity ratio, ~. Since the critical two-phase flow has a 
velocity maximum in the center and the local dynamic pressure depends upon the local values of 
density and velocity of both phases and upon the local void fraction, ,6dy n =f(jOG, V~G, /gL, V~'L, ~), 
the working hypothesis can be established that the density of the flow assumes a maximum at the 
wall and that it decreases towards the axis. For the description of this type of flow, the dispersed 
two-phase flow model with radial density and void fraction distributions, first presented by 
Behringer (1936) and later improved by Zuber & Findlay (1965), is successfully adapted to 
dispersed critical flows. 

As shown schematically in the modeling procedure, depicted in figure 9, this novel application 
allows the evaluation of the dynamic pressure profile for subsequent computation of the radial 
velocity profile of the flow. The iterative modeling procedure consists of a superposition of the 
measured  dynamic pressure distribution and of the assumed  distribution for the local void fraction, 
according to 

g(r) = ~,=0 - (g,=0 - it= n) [6] 

The partition exponent, n, in the above equation determines the variation of the gradient of the 
local void fraction between the boundary values at the wall, r = R, and in the center of the flow, 
r = 0. The following two equations, 

A WG 2 l[gpG~'2+]'(1--~)pL(-~ff) ] [7a] /%. = 

and 'E' /gdyn = ~ J E p G W G + ( 1 - - E ) p  L , [7b] 

are used to calculate the phase velocity distributions from the measured dynamic pressure. In these 
equations a local velocity ratio, ~, must be assumed, whereas for the momentum exchange factor 
J, correlations given by Adorni et al. (1961) and Reimann (1983), as well as our own correlation 
for ? '  adjusted to critical flow, were employed: 

0~<g~<0.245: J ' = 1 . 0 + 0 . 4 0 4 .  

0.245 < g <~ 1.0: ] '  = 0.9718 + 4.3125 • g - 38.7393 • ~2 

+ 130.5003 • g3 _ 161.5894" g4 

+ 65.8695 • gs. [8] 
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Figure 8. Dynamic pressure profiles (P0 for the two-phase flow profiles: ~ 15 bar, D = 0.003 m, 
L = 0.468 m, T ~ 293K). 
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Subsequent to preselection and optimization of the boundary conditions at the wall and in the 
center of the flow, of the partition exponent and the local velocity ratio, an integration is performed 
to yield the average void fraction 

1 F ~ dA ~ [9] 
A J~ 

and the mass flow rates 

and 

1 F po~ot(r) dA = mo [10] 
JA 

(1 - O" PL~L[1 -- ~(r)] dA = n~ L. [1 l] 

Integration of  the preceding equations is done in such a way that the computational results rvach 
agrevment with the mean data of  the corresponding experiments de~ribcd in section 6. In the 
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course of the integrational procedure attention was paid to satisfying meaningful physical 
requirements so that: 

• the local void fraction between the wall and the center of  the tube is continuously 
rising or becoming constant, respectively; 

• the local velocity at the wall is zero; 
• the local velocity between the wall and the center of the tube is continuously rising 

or becoming constant, respectively; 
• the local velocity in two-phase flows with a void fraction > 0.15 does not surpass 

the sonic velocity of the corresponding critical pure air flow; and 
• the value of the local velocity ratio is always less than that of the mean velocity 

ratio. 

The salient feature of this procedure is the fact that in all cases investigated the physically most 
plausible results are obtained by equating the local velocity ratio with unity, S -- 1, implying that the 
flow is locally homogeneous. This outcome agrees well with observations cited by Langner 0978) 
and Adorni et al. (1961). According to their findings, the local velocity ratio approaches unity for 
small droplets in continuous gas flows and for small bubbles in continuous liquid flows. Under the 
condition of a velocity ratio, S = l, both local velocities assume the same value and become equal 
to the local two-phase flow velocity according to 

~'2ph = ~wG + (1 - ~)WL. [12] 

8. S E M I - A N A L Y T I C A L  R E S U L T S  

Results for the local two-phase velocity, W2ph !, under critical flow conditions, plotted vs the radius, 
r, of  a test tube (i.d. 3 mm), are presented in the left half of  figure l0 for different mean void 
fractions in the exit cross-section. As would be expected, local velocities and void fractions rise 
simultaneously, especially, in the center of the flow. Also, the difference between velocities in the 
center of  the flow and near the wall increases with rising mean void fraction, thus explaining the 
increase in the mean velocity ratio displayed in figures 6a and 6b. However, for the mean void 
fraction, ( > 0.9-0.95, the velocity rise in the vicinity of the wall is more pronounced than in the 
center of  the flow, causing the decrease in the measured mean velocity ratio. 

A comparison of the local velocity profiles for several experiments is displayed in the right half 
of figure 10. This graph demonstrates the good agreement and consistency of  the velocity data 
derived from the measured dynamic pressures by using [8] and different conversion functions given 
by Adorni et al. (1961) and Reimann (1983). It should be emphasized that for the different 
computations only the conversion function is changed, whereas the radial distribution of  the void 
fraction is kept the same for each experiment. 
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Figure 10. Radial velocity profiles deduced from experimental data (l.h.s.) compared with deduced data 
using different conversion functions from Adorni et al. (1961) (A) and Reiman (1983) (R), and the current 

correlation [8] applied to critical flow (D) (P0 ~ 15bar, D = 0.003 m, L = 0.468 m, T ~ 293K). 
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Figure 11. Functional relationship between the local and mean void fraction, and the partition exponent 
[O D = 0.003 and 0.005 m, Z~ Nabizadeh-Arahgi (1977), 1"7 Petrick (1962)]. 

Additional results are shown in figure 11, in which the functional relationships between the wall 
(r = R) and the centerline (r = 0) local void fractions, together with the partition exponent and 
the mean void fraction, are displayed. Furthermore, the graph contains data given by Petrick (1962) 
and Nabizadeh-Arahgi (1977) for other fluids, however, under noncritical flow conditions. 
Approximations (dashed lines in figure 11) for the two boundaries and for the partition exponent 
derived from these data and depending upon the mean void fraction are given by the following 
equations: 

~,ffiR = 1 - (1 - ¢)t~/3), [13] 

E, ffi0 = 1 - ( 1  - ~)3.1 [ 1 4 ]  

and 

1.015 
n = (1.015 -- g)" [15] 

In the range of g < 0.75 the results obtained with [13]-[15] show good agreement with the findings 
for air-water flows at low velocities reported by van der Welle (1985), who did not account for 
the increase in the local void fraction at the wall. 

Although no experiments were performed in suberitical two-phase flows, a rather good 
agreement was obtained between the results of the proposed modeling yielding the radial 
distribution of the void fraction and the experimental data given by Petrick (1962), Nabizadeh- 
Arahgi (1977) and van der Welle (1985). Therefore, this novel method can also be applied to the 
calculation of radial distributions of the void fraction in non-critical flows, provided the flow is 
dispersed. 

9. HOMOGENEOUS SONIC VELOCITY 

Experimental data, together with computations, have suggested that the velocities of the two 
phases are locally identical. Consequently, there does exist a locally homogeneous flow system, and 
since the flow is critical, its local two-phase velocity must equal the local homogeneous sonic 
velocity, tih. This observation is reflected in figure 12, in which both velocities, the one derived from 
measurements and the other calculated according to the model given by Nguyen & Winter (1981), 
are shown for comparison at three significantly different mean void fractions. Disregarding the 
values close to the wall, the agreement between both types of results is remarkable, implying that 
the homogeneous sonic velocity can be used as a limiting approximation of the local two-phase 
velocity under critical conditions, The diagram also contains an insert (r.h.s.) of the homogeneous 
sonic velocity plotted against the void fraction, computed with the flexible wall model given by 
Nguyen & Winter (1981). From this, it follows that the sonic velocity increases with pressure (here 
PE), while the limiting sonic velocities for E = 0 (pure water) and E = 1 (pure air) remain constant. 
This particular feature explains the pressure-dependent decrease in the mean velocity ratio, as 
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Figure 12. Comparison of predicted local homogeneous sonic velocities with measured velocities. 

shown in figures 6a and 6b, the reason being the decrease in the velocity difference between the 
core flow and the one close to the wall. 

In single-phase, one-component pipe flows the sonic velocity is constant over the cross-section 
of the conduit and its mean value equals the local value in the absence of radial distributions in 
temperature and properties. For calculation of the maximum mean flow velocity no integrational 
procedure is needed. In contrast to the behavior of this type of flow, in two-phase flows the sonic 
velocity depends upon the local properties and especially on the local void fraction. Since the void 
fraction varies over the cross-section of this flow, the two-phase sonic velocity also varies and 
because the relationship between the two quantities is not linear, as demonstrated in the right half 
of figure 12, a computation with average values is not permissible, thus an integrational procedure 
has to be applied. 

Once, the radial distribution of the local void fraction is known from [6] and [13]-[15], it is 
possible to compute the radial distribution of the local two-phase velocity with the help of the void 
fraction and the pressure-dependent local homogeneous sonic velocity. The results of these 
computations with the mean void fraction as parameter are shown in the left half of figure 13. In 
this context it must be stressed that for mean void fractions < 0.6, the computed local homogeneous 
sonic velocities show an increase near the wall. Since such an increase is physically impossible, the 
1/7-power-law must be employed to predict the true velocity distribution in the wall regions, as 
illustrated in the right half of figure 13. For that reason, the local two-phase velocity close to the 
wall in [12] is substituted by the 1/7-power-law velocity distribution. 
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Figure 13. Radial velocity profiles computed with the current model for an air-water system (p = 2 bar, 
T = 293K). 
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The mean velocity ratio under critical flow conditions can be derived from 

f, ah(O (1 - 0 £(r) dA 

; =  [16] 
f a~(O • [1 - ~(r)] dA 

Integrating the local void fraction related sonic velocity terms in [16] within the identified limits 
shown in figure 11, and given by [13]-[15], and taking into account that the local velocity has to 
go to zero at the wall, the interdependence between the mean velocity ratio and mean void fraction 
can be demonstrated for three different exit pressures, as shown in figure 14. If the 1/7-power-law 
and the wall condition of zero velocity were not taken into account, the local velocity in the 
proximity of the wall would have risen to a maximum, yielding a mean velocity ratio of < 1 and 
very high values for the critical mass flux which were not measured in the course of the experiments. 

A further development in the current modeling procedure yields the following expression for the 
critical mass flux: 

1 

This equation provides a computational tool for the prediction of the critical mass flux, which is 
plotted vs the mean void fraction with exit !pressures as a parameter in figure 15. Predictions for 
the mean velocity ratio and critical mass fl~Lx coincide quite well with the experimental findings. 

It is remarkable that the calculated velocity profiles under critical flow conditions do not match 
the profiles called for by the distribution function, ( y / r )  ~/m. However, this disagreement is not a 
contradiction, because profiles of this type were only observed in subcritical steady-state flows with 
low axial pressure gradients. From such initially subcritical velocity profiles, ( y / r )  ~/', the flow 
accelerates while approaching critical velocities, especially, in the center o f  the flow. Locally the 
velocity is limited by the sonic velocity, which depends upon the local void fraction. Solely in the 
vicinity of the wall, where the local velocity must approach zero, and in case of critical two-phase 
flows having mean void fractions: <0.6, these conditions no longer hold true. Because of the 
different velocity profiles and of the variation in the radial phase distribution, particularly in the 
range of small mass fluxes in critical and non-critical flows, the functional relationship between the 
m e a n  velocity ratio and mean  void fraction for non-critical flows has to be modified. In addition 
to these effects occurring in non-critical flows the acting shear stress decreases, causing an increase 
in the size o f  bubbles and droplets, so that a local velocity ratio, ~ > 1, must be considered, as 
for instance, has been observed by Adorni et  al. (1961) and Langner (1978). Finally, it can 
be summarized that especially for dispersed undercritical two-phase flows, the radial phase 
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Figure 14. Mean critical velocity ratio (['-] p e r  1.7+0.15bar, D •0.003 and 0.005m, L/D >1 156, 
r~ ~ 293K). 
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distribution equals that in critical flows, but it is not possible to calculate the mean velocity ratio 
in the same way since the radial velocity distribution is unknown. 

Computation of the mean critical velocity ratio and the mean void fraction proved that the 
relations for the mean void fraction given by Hughmark (1962) and Nabizadeh-Arahgi (1977) are 
very useful for the evaluation of the present experimental data. The same holds true for the 
correlations of the frictional pressure loss presented by Beattie & Whalley (1982) and Vin~ (1985), 
and for a homogeneous model published by Friedel (1978). Winter & Deichsel (1988), furthermore, 
showed that the present concept developed for the description of critical air-water flows can also 
be applied to liquid-vapor single-component flows, provided their properties and sonic velocities 
are known. Both, the mean velocity ratio and the critical mass flux were obtained by integration 
over the flow cross-section in a pipe, but it should also be feasible to adapt this procedure to critical 
flows in conduits of different shapes. 

10. P A R A M E T E R  V A R I A T I O N  

A comprehensive parameter variation was performed in order to prove the applicability of the 
novel model to the prediction of critical two-phase flow conditions. The sensitivity with which, 
both, the mean critical velocity ratio, ~, and the critical mass flux, G respond to a variation in the 
most influential parameters was investigated. Typical results of the study are delineated in figures 
16 and 17, the current predictions are drawn in bold lines. 
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If the flow conditions of zero velocity at the wall is relaxed and, furthermore, an increase in the 
local two-phase velocity in the axial direction between the cen te rof  the flow and the wall is 
permitted, then for void fractions ~ < 0.4, the current model yields values significantly < 1 for the 
mean velocity ratio and too large values for the critical mass flux, which are not corroborated by 
the experiments. In figures 16 and 17 these curves are identified by the notation "without zero 
velocity correction". 

Assuming a local velocity ratio or even a velocity ratio distribution > 1 across the flow in [12] 
leads to higher mean velocity ratio values than those predicted, causing simultaneously a sizeable 
decrease in the critical mass flux shown in figures 16 and 17 for a constant local velocity ratio of 
S =  1,5. 

The model for the homogeneous two-phase flow sonic velocity given by Semenov & Kosterin 
(1964) yields excessively large values for the mean velocity ratio, especially in the range of large 
void fractions. This behavior of the mean velocity ratio is accompanied by a large decrease in the 
critical mass flux. 

Good agreement, especially in the case of the critical mass flux, between the predictions of the 
present work and those obtained using van der Welle's (1985) radial distributions of the local void 
fractions is obtained, when the fact that the local void fraction can not exceed unity is taken into 
account when performing the computations. 

Minor variations in the most significant and interdependent influential parameters show the 
sensitivity of the present model. In many cases, not all shown here, these variations result in 
situations which do not reproduce the findings of the experiments and for which no physically 
meaningful interpretation is possible, hence confirming the applicability and validity of the novel 
model. 

1 1. C O N C L U S I O N S  

An experimental facility has been designed and constructed for the investigation of critical 
two-phase flow phenomena in air-water mixtures. Measurements of the total momentum and local 
total pressure of the flow in the exit cross-sections of various test tubes were conducted. Based on 
these measurements the interdependence between the mean critical velocity ratio and the local void 
fractions and velocities could be clarified, revealing a value of 1 for the local velocity ratio, ~ = 1 
in dispersed critical air-water two-phase pipe flows. For the predetermination of the radial phase 
distributions, limiting values for the local void fraction in the center of the flow and at the wall 
of the pipes, as well as a partition exponent, were found for critical dispersed flows in test tubes 
with i.d. I> 3 mm and with length-to-diameter ratios /> 156. Applying these radial phase distribu- 
tions together with a well-known homogeneous sonic velocity model and taking into account the 
condition of zero velocity at the wall, the mean critical velocity ratio and mass flux were computed 
with the help of the novel integrational procedure. The results of a brief parameter variation 
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demonstrate the applicability of the current model to the description of dispersed critical 
two-phase flows. 
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